1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
use std::cmp;
use grammar::{ContextFree, ContextFreeRef};
use rhs_closure::RhsClosure;
use rule::GrammarRule;
use symbol::{Symbol, SymbolBitSet};
pub struct MinimalDistance<'a, G: 'a> {
grammar: &'a G,
distances: Vec<Vec<Option<u32>>>,
prediction_distances: Vec<Option<u32>>,
completion_distances: Vec<Option<u32>>,
min_of: Vec<Option<u32>>,
}
impl<'a, G> MinimalDistance<'a, G>
where G: ContextFree + 'a,
&'a G: ContextFreeRef<'a, Target = G>
{
pub fn new(grammar: &'a G) -> Self {
let distances = grammar.rules().map(|rule| vec![None; rule.rhs().len() + 1]).collect();
MinimalDistance {
grammar: grammar,
distances: distances,
prediction_distances: vec![None; grammar.num_syms()],
completion_distances: vec![None; grammar.num_syms()],
min_of: vec![None; grammar.num_syms()],
}
}
pub fn distances(&self) -> &[Vec<Option<u32>>] {
&self.distances[..]
}
pub fn minimal_distances<I, J>(&mut self, iter: I) -> &[Vec<Option<u32>>]
where I: Iterator<Item=(<&'a G as ContextFreeRef<'a>>::RuleRef, J)>,
J: Iterator<Item=usize>
{
self.minimal_sentence_lengths();
self.immediate_minimal_distances(iter);
self.transitive_minimal_distances();
self.distances()
}
fn minimal_sentence_lengths(&mut self) {
let terminal_set = SymbolBitSet::terminal_set(&self.grammar);
for terminal in terminal_set.iter() {
self.min_of[terminal.usize()] = Some(1);
}
for rule in self.grammar.rules() {
if rule.rhs().is_empty() {
self.min_of[rule.lhs().usize()] = Some(0);
}
}
RhsClosure::new(self.grammar).rhs_closure_with_values(&mut self.min_of);
}
fn immediate_minimal_distances<I, J>(&mut self, iter: I)
where I: Iterator<Item=(<&'a G as ContextFreeRef<'a>>::RuleRef, J)>,
J: Iterator<Item=usize>
{
for (idx, (rule, positions)) in iter.enumerate() {
for position in positions {
let (min, _) = self.update_rule_distances(0, &rule.rhs()[..position], idx);
set_min(&mut self.prediction_distances[rule.lhs().usize()], min);
}
}
}
fn transitive_minimal_distances(&mut self) {
let mut changed = true;
while changed {
changed = false;
for (idx, rule) in self.grammar.rules().enumerate() {
if let Some(distance) = self.completion_distances[rule.lhs().usize()] {
let (_, changed_now) = self.update_rule_distances(distance, rule.rhs(), idx);
changed |= changed_now;
}
}
}
}
fn update_rule_distances(&mut self, mut cur: u32, rhs: &[Symbol], idx: usize) -> (u32, bool) {
let set = &mut self.distances[idx];
for (dot, sym) in rhs.iter().enumerate().rev() {
set_min(&mut self.completion_distances[sym.usize()], cur);
set_min(&mut set[dot + 1], cur);
cur += self.min_of[sym.usize()].unwrap();
if let Some(sym_predicted) = self.prediction_distances[sym.usize()] {
cur = cmp::min(cur, sym_predicted);
}
}
let changed = set_min(&mut set[0], cur);
(cur, changed)
}
}
fn set_min(current: &mut Option<u32>, new: u32) -> bool {
if let Some(ref mut current) = *current {
if *current > new {
*current = new;
true
} else {
false
}
} else {
*current = Some(new);
true
}
}